SDSS-II Supernova Survey

Masao Sako (Penn)
for the SDSS-II Collaboration and SN Spectroscopic Follow-up Teams

Type Ia Supernovae as standard candles.

"known"

$$F = \frac{(L)}{4\pi d_L^2}$$

thermonuclear explosions of white dwarfs

 d_{L2}

X

luminosity-distance (depends on cosmology)

 d_{L3}

 d_{L1}

- bright! $(M \sim -19.5 \text{ mag}; L \sim 10^{43} \text{ erg/s})$
- occur in all types of galaxies.

SN Ia are not exactly standard candles

- * Realized in the 1960s that SN Ia light curves are nearly uniform (Zwicky 1965; Pskovskii 1967; Kowal 1968).
- * But quantitative differences have been found (Pskovskii 1970, 1977) and that there are "fast" and "slow" decliners (Barbon et al. 1973).

- * The Phillips relation
- * Peak absolute magnitude vs decline rate parameter are related.
- * Dispersion:
 - * $\sim 0.3 0.4 \text{ mag in } BVI$

 $\rightarrow \sim 15 - 20\%$ in distance

amount of dimming in 15 days after peak in B band.

Multi-color light curve shape (MLCS)

luminous/blue

dim/red

Jha, Riess, & Kirshner (2006)

133 SN Ia; $\sigma \sim 0.18$ mag ($\sim 7\%$ in distance!)

- * Luminosity calibration (aka "training") is done using low-z SN Ia.
 - need external calibrator (e.g,
 Cepheid variables) to
 determine luminosity
- * High-z sources are redshifted. Must correct observed light curves into rest-frame.
- * K-correction: requires assumption of spectrum and its time dependence.

- * Reddening and extinction by dust in our Galaxy and in the SN host galaxy.
- * Results in dimming of SN.
- * Reddening/extinction relation depends on properties of dust.
 - * evolution with redshift?

Cardelli, Clayton, & Mathis (1989)

- * SNe can be:
 - * standardized
 - * observed out to large z.
- * redshift-distance $d_L(z)$ relation tells you the
 expansion history, which
 depends on the matter
 and energy content of
 the universe

 from photometry

from spectroscopy

$$d_L = \frac{c}{H_0} \kappa_0^{-1/2} S \left(\kappa_0^{1/2} \int_0^z dz' \left[\sum_i \Omega_i (1+z')^{3+3w_i} - \kappa_0 (1+z')^2 \right]^{-1/2} \right)$$

 $S(x) = \sin(x), x, \sinh(x)$ for closed, flat, open

$$\kappa_0 = \sum_i \Omega_i - 1$$

- * Distance measurement of a single SN cannot determine absolute values of $\Omega_{\rm m}$ and Ω_{Λ} .
- * Calibration errors result in wrong cosmology.

- * Distance measurement of a single SN cannot determine absolute values of $\Omega_{\rm m}$ and Ω_{Λ} .
- * Calibration errors result in wrong cosmology.

- * Distance measurement of a single SN cannot determine absolute values of $\Omega_{\rm m}$ and Ω_{Λ} .
- * Calibration errors result in wrong cosmology.

First evidence for an accelerating universe!

$$q_0 = \frac{\Omega_m}{2} - \Omega_{\Lambda} < 0$$

$$\Omega_{\Lambda} > \frac{\Omega_m}{2}$$

1998 Breakthrough of the Year

ESSENCE (Wood-Vasey et al. 2007)

redshift desert

38

36

34

0.2

0.4

0.6

SN Redshift

SNLS (Astier et al. 2006)

 $-(\Omega_{\rm m},\Omega_{\Lambda})=(0.26,0.74)$

---- $(\Omega_{\rm m}, \Omega_{\Lambda}) = (1.00, 0.00)$

8.0

SDSS-II SN Survey

- 300 deg² every 2 days during Sept 1 Nov 30 of 2005/6/7.
- multi-band light curves of SN Ia at 0.05 < z < 0.4 (redshift desert)

- shallow-wide survey; probes ~8 times more total volume than SNLS
- well-calibrated photometric system (~1% absolute flux)
- redshift range allows self-trained cosmology analysis *on a single telescope*

http://sdssdp47.fnal.gov/sdsssn/sdsssn.html

SNLS (Astier et al. 2006)

SDSS-II SN Survey Team

Fermilab

J. Frieman (U Chicago), F. DeJongh, J. Marriner, D. McGinnis, G. Miknaitis

U Chicago

B. Dilday, R. Kessler, M. Subbarao (Adler Planetarium)

APO

J. Barentine, H. Brewington, J. Dembicky, M. Harvanek, J. Krzesinski, B. Ketzeback, D.

Long, O. Malanushenko, V. Malanushenko, R. McMillan, K. Pan, S. Saurage, S. Snedden, S.

Watters

U Washington

A. Becker, C. Hogan, J. VanderPlas

NMSU

T. Gueth, J. Holtzman

OSU

D. Depoy, J. Marshall, J. Prieto

U Tokyo

M. Doi, K. Konishi, T. Morokuma, N. Takanashi, K. Tokita, N. Yasuda

U Portsmouth

H. Lampeitl, R. Nichol, M. Smith

KIPAC

R. Blandford, S. Kahn, R. Romani, C. Zheng

U Penn

C. D'Andrea, J. Mosher, M. Sako

Rutgers

S. Jha

SAAO

B. Bassett, E. Elson, P. Vaisanen, K. van der Heyden

RIT

M. Richmond

Penn State

D. Schneider

Notre Dame

P. Garnavich

STScI

A. Riess

Wayne State

D. Cinabro, Matt Taylor

SNU

C. Choi, M. Im

HET team

Goettingen (W. Kollatschny), Munich (R. Bender, U. Hopp), U Texas (C. Wheeler, P.

Hoeflich)

ESO team

A. Aragon-Salamanca, M. Bremer, F. Castander, C. Collins, A. Edge, A. Goobar, C.

Henriksen, G. Leloudas, J. Lucey, J. Mendez, L. Ostman, K. Romer, P. Ruiz-Lapuente, J.

Sollerman, M. Stritzinger, M. Turatto

MDM team

R. Assef, A. Crotts, J. Eastman, M. Eyler, C. Morgan, K. Schlesinger, L. Watson

Subaru team

Y. Ihara

KPNO team

M. Florack, A. Hirschauer, D. O'Connor

Keck team

R. Foley, A. Filippenko

Data Processing Challenges

- A "good" full night of imaging results in:
 - ~200 GB of reduced images
 - gri frames run through an image subtraction program on dedicated cluster at APO
 - register images, match PSF, zeropoint scaling, etc.
 - search for statistically significant deviations
 - dump known variables, moving objects

veto catalog

- ~4000 objects transfered to Fermilab for human to scan
- ~400 of them tagged as SNe
- ~200 new "SNe" per night

SN candidates

http://sdssdp47.fnal.gov/sdsssn/sdsssn.html (public)
http://sdssdp47.fnal.gov/sdsssn_data/sdsssn.html (not so public)

add fake SNe

2005 season

History for Object Id 851735 By Position

Found 21 previous objects.

Obj Id	srun	trun	rr	сс	ra	decl	MJD	gmag	rmag	imag	Days Before
<u>451485</u>	5582	3325	10	3	44.45755	-0.35232	53622.4	21.75	21.6	21.7	73.9
<u>511175</u>	5607	3325	11	3	44.45755	-0.35232	53627.4	21.71	21.9	21.46	69
<u>526815</u>	5619	826003	10	3	44.45751	-0.35229	53634.4	0	0	0	62
526818	5619	826003	10	3	44.45754	-0.35228	53634.4	0	0	0	62

Scanner	Sako	No updates	All	
Obj Id	851735			
srun	5889	sfield	65	
trun	826003	tfield	636	
rr	10	сс	3	
ra	44.457577	decl	-0.352280	
gmag	21.988	g_delta	0.14	
rmag	21.829	r_delta	0.50	
imag	22.059	i_delta	0.48	
Flags				
Ttl Objects	54			
# Scanned	0			

Back to initializing page.

Manual Scan Guide

- [0] None
- C [1] Artefact
- C [2] Moving
- C [3] Sat. Star
- C [4] Dipole
- [5] Variable
- [6] Transient
- C [9] Cosmic Ray
- [103] SN GOLD
- [102] SN SILVER
- C [101] SN BRONZE
- C [100] SN OTHER
- ☐ Hand Veto

UPDATE

NEXT CAND/SKIP

History for Object Id 851749 By Position

Found 12 previous objects.

Obj Id	srun	trun	rr	сс	ra	decl	MJD	gmag	rmag	imag	Days Before
648741	5760	826003	10	3	44.93394	-0.3439	53665.5	21.94	21.78	21.95	30.9
668948	5771	826003	10	3	44.93397	-0.34385	53668.4	21.61	21.83	21.98	27.9
<u>681316</u>	5776	826003	10	3	44.93397	-0.34388	53669.4	21.6	21.65	21.56	27
682246	5782	826003	10	3	44.93395	-0.34388	53670.5	21.7	22.03	0	25.9

Scanner	Sako	No updates	Ali
Obj Id	851749		
srun	5889	sfield	68
trun	826003	tfield	639
rr	10	сс	3
ra	44.933941	decl	-0.343870
gmag		g_delta	
rmag	21.672	r_delta	0.20
imag	21.433	i_delta	0.20
Flags			
Ttl Objects	54		
# Scanned	0		

Back to initializing page.

Manual Scan Guide

- [0] None
- [1] Artefact
- C [2] Moving
- C [3] Sat. Star
- C [4] Dipole
- C [5] Variable
- [6] Transient
- [9] Cosmic Ray
- [103] SN GOLD
- [102] SN SILVER
- [101] SN BRONZE [100] SN OTHER
- [100] 0,10.

☐ Hand Veto

UPDATE

NEXT CAND/SKIP

Realtime Photometric Typing

- * Typically, there are hundreds of active SN candidates.
- * Compare light curves with library of Ia, Ibc, II templates.
- * Select ~20 "good" targets for spectroscopic follow up.

Sako et al. (2008)

Spectroscopic follow up

confirm type and measure redshifts

10m Keck

2.5 m NOT 3.6 m NTT

8.2 m Subaru

3.5 m ARC

4.0 m KPNO

2.4 m MDM

	2005	2006	2007
nights on 2.5m	59	60	55
runs	73	90	74
objects scanned	190,020	14,441	15,264
SN candidates	11,385	3694	3966
confirmed SN Ia	130	197	171
probable SN Ia	16	15	21
SN Ia host z	81	13	

improved junk filter trained with 2005 data

Sako et al. (2008)

498 SN Ia + 80 CC SNe in 9 months.

improved junk filter trained with 2005 data

Sako et al. (2008)

498 SN Ia + 80 CC SNe in 9 months.

2005 & 2006 Seasons

peaked after peaked before Sept. 7 Sept. 7

Follow-up spectrum usually obtained after ~2 - 4 epochs (~90% confirmation efficiency for SN Ia).

Frieman et al. (2007)

> 85% of SN Ia discovered before maximum light

also attempted 20 single-epoch candidates (15 SNe, 1 galaxy, 2 noise, 2 asteroids)

Low-z calibration/training

- well-calibrated photometry (flux and color)

Mosher et al. in prep.

- early light curve
- multi-epoch spectra for subset (study K-correction systematics)

Spectroscopy

Zheng et al. (2008)

- total of \sim 1000 spectra taken in three seasons.
- multi-epoch spectroscopy of selected nearby SNe.
- work on host galaxy modeling and subtraction.

Hamuy & Pinto (2002)

Type II-P as standard candles?

D'Andrea et al. in prep.

Prieto et al. (2007)

SN2005gj

- co-discovered by SDSS-II & SNFactory
- SDSS + CSP + MDM data
- SN2002ic-like thermonuclear SN in dense environment?

Low-z SN Ia Rate

SDSS-II 2005 data (17 SN Ia at z < 0.12)

- error dominated by systematic uncertainties

$$\frac{\sigma_{\mathrm{stat}}}{\sigma_{\mathrm{syst}}} > 5$$

Dilday et al. (2008)

- blind search; well-understood efficiency.
- spectroscopic confirmation nearly complete out to z~0.15
- working to extend out to z~0.25

SN vs host properties

263 SNe Ia at z < 0.25

- estimate galaxy mass and SFR from flux and colors

SDSS-II data (Smith et al. in prep)

SNLS data (Sullivan et al. 2006)

Photometric SN Ia Candidates

- * Many candidates are not observed spectroscopically.
- * Identified an additional ~650 high-quality photometric SN Ia candidates at z < 0.4 from (2005 2006 data)
 - * continue to obtain host redshifts.
- * Determination of the rate at z~0.3.

black line + SN Ia candidates with measured host galaxy redshifts

SN Hubble Diagram

SN Hubble Diagram

2005 data

- 129 SN Ia
- 89 after cuts

results out soon...

Self-Contained Cosmology Analysis

